What Makes a TV Cable Ready?
Having Fun with Animation and Time Lapse
Taping Underwater: Video’s New Wave

BERGER-BRAINTHAITE VIDEOTESTS
Sanyo VCR • GE Color TV • Schudel Projection TV • KLH Noise Filter
TEN YEARS OF VIDEO GAMES

After a decade, a look at where we've been and where we're going

by Bill Kunkel

and Frank Laney, Jr.

Eavesdrop on any of five million living-rooms and you'll likely hear some variation of the following dialogue:

"Wanna watch some television?"

"Nah, let's shoot aliens."

The speakers aren't a virulent new species of immigration official, just members of households with home video game systems. Those beeps and boops, heard in thousands of bars, restaurants, bowling alleys, and candy stores, are now as familiar as the throb of air conditioners.

Operators of movie theaters and amusement parks are getting into the act by renting coin-operated video games to enhance their appeal.

And the once-dominant penny arcade has gone electronic. The once-dominant pinball machine now must share the limelight with the video game. Fans of Atari's " Asteroids" fed over 10 million quarters into its coin slots last year.

"Get a Horse"

It was not always thus. Whenever inventors have brought forth great discoveries, skeptics have invariably scoffed, then told pioneering motorists to "get a horse" and assured the Wright brothers that "it'll never fly." The creators of the early video games faced similar derision, and not a few serious obstacles. Ralph Baer, working for Magnavox, developed the first games for play on a TV set in late 1971. The mammoth electronics company secured a patent during the following year and prepared to take the world by storm.

It didn't happen, at least initially. The public got its first peek at the Odyssey video-game system on a TV special in 1971. What they saw was a space-age device, bargain-priced at only $75, that could play a whole range of fairly simple games. The response to Magnavox's new product fell far short of overnight acceptance.

An examination of the system makes the reasons behind this lukewarm reception painfully obvious. Like the earliest computers, which used vacuum tubes instead of transistors, the Odyssey was a good idea that arrived ahead of its time. It took technological reality a few years to catch up to the dream.

The original Odyssey consisted of a large off-white console connected to a pair of controllers by elephantine cables. Since the Odyssey could not "draw" playfields on the screen—a process called video mapping—Magnavox designers resorted to brightly colored clear plastic overlays. Arcaders taped these sheets to the TV screen much in the manner of the old Winky Dink Saturday-morning children's show.

The Odyssey device was not only the first video game, but also the first programmable one. Little metal boards carrying program information could be plugged into a slot in the console for play. The gargantuan controllers more closely resembled clock-radios than the joysticks and paddles now so familiar to contemporary gamers. Twisting the dial caused on-screen movement. An "English switch" on each controller caused the ball to do flip-flops and loop-de-loops when playing Odyssey's video tennis game.

Spotty availability and technological limitations doomed the Odyssey. Many observers were preparing to write off video games as just another stillborn craze.

Father Knows Best

Obituaries turned out to be premature. Enter the man whom many call "the father of the video game," Nolan Bushnell. He emerged from the obscurity of his California garage toting the prototype for "Pong." Bushnell quickly sensed the potential of his electronic ball-and-bat brainchild, so he took it to the Bally Manufacturing Company. The then-leading maker of pinball machines was unimpressed. Bally executives gave the budding inventor the fast shuttle, clearly nadaring his idea.

The Odyssey device was not only the first video game, but also the first programmable one. Little metal boards carrying program information could be plugged into a slot in the console for play. The gargantuan controllers more closely resembled clock-radios than the joysticks and paddles now so familiar to contemporary gamers. Twisting the dial caused on-screen movement. An "English switch" on each controller caused the ball to do flip-flops and loop-de-loops when playing Odyssey's video tennis game.

Spotty availability and technological limitations doomed the Odyssey. Many observers were preparing to write off video games as just another stillborn craze.

Father Knows Best

Obituaries turned out to be premature. Enter the man whom many call "the father of the video game," Nolan Bushnell. He emerged from the obscurity of his California garage toting the prototype for "Pong." Bushnell quickly sensed the potential of his electronic ball-and-bat brainchild, so he took it to the Bally Manufacturing Company. The then-leading maker of pinball machines was unimpressed. Bally executives gave the budding inventor the fast shuttle, clearly

The Odyssey device was not only the first video game, but also the first programmable one. Little metal boards carrying program information could be plugged into a slot in the console for play. The gargantuan controllers more closely resembled clock-radios than the joysticks and paddles now so familiar to contemporary gamers. Twisting the dial caused on-screen movement. An "English switch" on each controller caused the ball to do flip-flops and loop-de-loops when playing Odyssey's video tennis game.

Spotty availability and technological limitations doomed the Odyssey. Many observers were preparing to write off video games as just another stillborn craze.

Father Knows Best

Obituaries turned out to be premature. Enter the man whom many call "the father of the video game," Nolan Bushnell. He emerged from the obscurity of his California garage toting the prototype for "Pong." Bushnell quickly sensed the potential of his electronic ball-and-bat brainchild, so he took it to the Bally Manufacturing Company. The then-leading maker of pinball machines was unimpressed. Bally executives gave the budding inventor the fast shuttle, clearly

The Odyssey device was not only the first video game, but also the first programmable one. Little metal boards carrying program information could be plugged into a slot in the console for play. The gargantuan controllers more closely resembled clock-radios than the joysticks and paddles now so familiar to contemporary gamers. Twisting the dial caused on-screen movement. An "English switch" on each controller caused the ball to do flip-flops and loop-de-loops when playing Odyssey's video tennis game.

Spotty availability and technological limitations doomed the Odyssey. Many observers were preparing to write off video games as just another stillborn craze.
Introduced in 1971, the Odyssey video-game system from Magnavox was a $75 device that could play several simple games. It consisted of a console, a pair of controllers, plastic TV-screen overlays, and metal program-information boards.

Convinced that traditional flipper games could never be topped off their throne. (The Chicago-based manufacturer has since learned the error of its ways, incidentally, and is today a leading maker of coin-operated video games.)

Bushnell remained convinced that "Pong" had a future. He organized a concern he dubbed Atari, after the word in the Japanese game of Go that corresponds to "checkmate" in chess. In 1974 Atari made a deal with Sears, Roebuck, and its "Pong" appeared in the mail-order company's catalog for the first time. The Sears tie-in put Atari over the top and helped establish the "dedicated-chip" video game as a certified fad. The dedicated chip is a tiny piece of silicon on which "logic circuits" are imprinted, allowing this electronic wonder to handle the essentials of play such as drawing the field and moving the paddles. These early devices were also called "hard-wired" games because they were not programmable and thus could only play the one, two, or three contests actually imprinted on the chip built into the game console.

In the next couple of years, following in the wake of Atari's obvious success, the first great wave of video-game mania crashed on the shore of popular culture. The capabilities of dedicated chips rose nearly as fast as retail prices nosedived. How hot was the market for such units in the mid-1970s? Here are a few of the companies that got heavily involved in hard-wired games: APF ("TV Gun Game"), Atari ("Pong"), "Super-Pong," and others), Calfax ("Bag-A-Tel"), Coleco ("Telstar"), Entex ("Tele-Pong"), National Semiconductor ("Adversary"), Radio Shack ("TV Scoreboard"), and many more. Magnavox alone produced at least seven different hard-wired systems.

As might be expected, game-lovers soon began to weary of "Pong"'s brand of thrills. The companies countered with increasingly sophisticated hard-wired devices that could play several different ball-and-paddle diversions. The Atari also tried to break the mold and widen the available spectrum of video fun by marketing "Indy 500" and "Video Pinball." Programmability edged back into the picture at this point. Fairchild's "Channel F," for example, offered a generous selection of entertainment cartridges almost from its inception. The manufacturer had already sold 300,000 systems and even designed an improved, second-generation unit before quitting the game field entirely.

Channel F might have caught on with flashier games and better marketing strategy, but RCA's Studio II video-game system had all the earmarks of a disaster right from the start. On-screen movement was agonizingly slow, and the pictures were black-and-white at a time when upscale hard-wired machines had already begun offering color graphics.

Arcade Rumbles

This was all treading water, as it turned out. In 1978 three major events took place that have shaped electronic gaming. Atari introduced its Video Computer System (VCS), Magnavox signaled its video-game comeback by marketing the Odyssey², and Japan's Taito produced its first coin-operated "Space Invaders" unit.

Programmability, a feature of both the Atari and Magnavox home arcades, transformed electronic gaming from a fad into a budding lifestyle. Consumers had grown sick and tired of trading up to successively more elaborate dedicated-chip systems and hiding the outmoded ones in the back of a closet. With the versatility provided by individual game cartridges, home arcades could count on getting a steady supply of fresh programs to keep their machines continually new and interesting. The Atari VCS and Odyssey², which made dump-sale items out of most of the hard-wired video games, switched emphasis from hardware to software. A majority of buyers no longer cared much about the system's extra frills and features; the variety and quality of available games became the main attraction.

The much-discussed popularity of "Space Invaders" first in Japan and then in the U.S. had beneficial consequences for the emerging hobby. Not only did the high visibility of "Space Invaders" furnish the media with a handy peg on which to hang stories about the video-game phenomenon, but the favorable publicity surrounding "Space Invaders" and the other coin-operated marvels that have followed it virtually rehabilitated commercial arcades' seedy image overnight. Millions of people who had never set foot inside a game parlor suddenly turned into regular customers thanks to...
“Space Invaders.” And when Atari premiered its “Space Invaders” cartridge for the VCS in 1980 it forged a synergy between home arcading and game palaces that is still growing stronger every day.

Folks who enjoy a particular machine at the family amusement center often want the same title for their home systems. The video-game manufacturers are of course only too pleased to cater to this desire. “Asteroids,” “Breakout,” “Dodge ‘Em,” and “Missile Command” are some of the video games that have struck gold in both arenas after starting life as coin-operated attractions. Atari “Basketball,” on the other hand, is a design that originated as a VCS cartridge and is now finding acceptance, in refined form, in the fun parlors.

Mattel Electronics, which has several hugely successful lines of electronic stand-alone games, invaded the programmable market with Intellivision in 1980. Its Master Component, though intended as the cornerstone of a modular computer, is a superb video-game system all by itself. Although the often-promised keyboard is now two years late, most arcades are too busy reveling in Intellivision’s ingeniously detailed sports and military simulations to care.

The Mattel controllers combine a keypad with a direction disk and four action buttons to produce a device that is capable of infinitely more varied input than any paddle or joystick. This allows the Intellivision game library to include titles such as “Space Battle,” which melds an arcade-style space shootout with a more broad-based, strategic-level contest. The system’s graphics represent a tremendous plus. Intellivision generates visuals equal to the best produced by computers costing up to $5000. The gain in graphic resolution has a cost: movement on the screen isn’t as fast as that on some competing units.

In the same year, 1980, Jim Levy and a quartet of designers launched a new era in video gaming by starting ActiVision, which specializes in making game cartridges for use with the Atari VCS and does not offer a complete system of its own. It is thus the world’s first video-game company specializing in software. Which is not to say that there aren’t a lot of outlaws making games that can be played on a TV screen. There are, thanks to the rising interest in personal computers. Not only can microcomputer owners enjoy home versions of just about every arcade favorite, but the superior memory capacity of computers like the Apple II, Atari 400/800, Radio Shack TRS-80 Model III and Color Computer, and Commodore
PET allows games that would be far too complex for programmable video-game systems.

The epiphanic of current video-game design is “Star Raiders” (for the Atari computers), available on ROM cartridges similar to the ones Atari uses with the VCS. The program makes full use of the spectacular 400/800 graphics as well as both keyboard and joystick input to create an intricate science-fiction delight. As captain of one of earth’s mightiest ships, the arcader must scour the galaxy for the dreaded Zylons and wipe out these alien imperialists before they destroy all friendly starbases. It’s so complex that two or even three electronic space cadets can play as a team, though it also plays perfectly solo. And when “Star Raiders” narrows its focus to the tactical ship-vs.-ship situation, it’s as thrilling as any arcade space-battle machine. The Zylons boast three classes of spaceships, all capable of turning the player’s craft into a dead hulk with one well-placed shot.

Computers have even spawned an entirely new form of video game, the adventure. Popularized by Scott Adams, these contests require mental agility rather than manual dexterity. The arcader takes the role of a hero (or heroine) in some imaginative setting, generally some sort of fantasy world. The player types in two-word commands which enable the character to walk around, examine the surroundings, and even pick up and use objects.

Most video-game adventures are now composed purely of text, but this is beginning to change. Some newer titles feature high-resolution illustrations, animated sequences, even appropriate sound effects. Adventures will undoubtedly pick up more and more of such trappings as software suppliers compete for gamers’ attention, but fully realized visuals probably lie somewhere in the future.

Gleams in Arcaders’ Eyes

Also lurking just around the corner are programs that will combine the mental challenge of the text adventure with the fast-paced action of the dexterity-oriented arcade game. Lack of sufficient memory is the chief obstacle. The maximum memory for most of today’s microcomputers is 48K—48,000 bytes of information. This forces designers to choose between complicated on-screen movement and complex plotting. But the way hardware manufacturers keep upping the size of their computers’ information-storage capability, such super-games are inevitable by the mid-’80s.

Commercial-arcade video games are developing in parallel. Multi-phase machines like “Gorf” and “Pleasance”, which actually cycle through several mini-games, scored solid success in the amusement centers this year. This should lead in the near-to-far distant future to illustrated coin-operated adventures. Experimental setups that let a player drive a car...
surely through New England or visit a museum already exist. When the player indicates through sophisticated controls the action he wants to take, the computer summons up the appropriate full-color photograph. In the New England tour the player can even stop at a roadside restaurant, seat down, and order a meal. (Then he has to imagine eating it, since the whole sequence of events is electronic.) Once this technique is perfected, there's no reason why it couldn't be used for a more exciting scenario. How about a trip to Dante's Inferno? Another likely development is the "full-surround" coin-operated video game. Such machines would out-do current sit-down models by completely isolating the arcade. Sounds, pictures, even odors could be fed into the gaming enclosure to provide a vicarious but fully satisfying thrill. Eventually holography will be used to produce three-dimensional effects in arcade and home video games. Atari announced a tabletop device using holograms earlier this year, but the company subsequently returned its "Cosmos" system to the R&D department for more work. The hitch is that the 3D pictures serve only as window dressing and have no active part in the game. Atari's track record is so good that it's hard to bet against the company's researchers making a breakthrough in this area. When that happens, target-shooting games like "Missile Command" will literally take on astounding new dimensions.

And what of the programmable video game systems that began it all a decade ago? Changes are afoot here too. Putting extra memory chips directly into the cartridges gives designers a larger canvas on which to work, which should result in a second-generation series of more full-bodied games. As the cost of memory chips continues to plummet, it will become commercially feasible to add progressively more powerful chips to the cartridges. Also leading to more complex games is a recently developed Atari process that fools the VCS console into reading 8K programs. Introduced in "Asteroids" last summer, it effectively allows VCS owners to play games twice as complicated as most of the ones on the market today.

Odyssey has also extended the horizons of home video gaming with "Quest for the Rings." This hybrid design has aspects of both video game and board game. Since the human players perform some functions the system itself would otherwise handle—moving the heroes around within the game's mythical country, for instance—it gives Odyssey the scope to create more intricate games. Ironically, "Quest," like the manufacturer's original Odyssey, uses overlays. This time, however, it's an opaque plate that fits over the system's diaphragm keyboard to aid players in programming the details of "Quest's" dungeons.
Hardware isn't standing still either. Remote control is on its way from Atari, which may even have a remote-VCS model out in time for gift-giving this holiday season. Each of the wireless controllers has all the buttons and switches needed to select and play the games. This unit should come in handy in homes with big-screen TVs. Remote control not only eliminates the usual tangle of wires but also ends the need for leaving that comfortable chair across the room every time the arcader wants to choose a different game option or start a new round of play.

Ultimately, there'll be a new, more powerful video-game system with enough memory to match the microcomputers. The difference will be that such a device will be expressly tailored to the needs of gamers instead of being the typical general-purpose electronic brain.

The hobby of video gaming is developing at such a furious rate that the nature of future arcading is hard to forecast. One thing's for sure: gamers of 1991 won't love their electronic fun machines any more than gamers of 1981 adore "Pacman" or the gamers of 1971 doted on "Pong."

Happy 10th birthday, video games. Now, let's shoot aliens!