2600
(STELLA)
Programmer’s
Guide

By Steve Wright
12/03/79

Updated By Darryl May
7/1/88

levisi

(The TV picture according to Atari)

For purpose of STELLA programming, a single television "frame"
consists of 262 horizontal lines, and each line is divided by 228
clock counts (3.58MHz). The actual TV picture is drawn line by
line from the top down 60 times a second, and actually consists of
only a portion of the entire "frame” (see diagram #1). A typical
frame will consist of 3 vertical sync (VSYNC) lines to signal the
TV set to start a new frame, 37 vertical blank (VBLANK) lines, 192
TV picture lines, and 30 overscan lines. Atari’s research has
shown that this pattern will work on all types of TV sets. Each
scan line starts with 68 clock counts of horizontal blank (not seen
on the TV screen) followed by 160 clock counts to fully scan one
line of a TV picture. When the electron beam reaches the end of a
scan line, it returns to the left side of the screen , waits for
the 68 horizontal blank clock counts, and procedes to draw the next

line below.

All horizontal timing is taken care of by hardware, but the
microprocessor must “manually” control vertical timing to signal
the start of the next frame. When the last line of the previous
frame is detected, the microprocessor must generate 3 lines of
VSYNC, 37 lines of VBLANK, 192 lines of actual TV picture, and 30
lines of overscan. Fortunately both VSYNC and VBLANK can simply be
turned on and off at the appropriate times, freeing the

microprocessor for other activities during their execution.

'370A0 INIHOVIN H3d SINNOD MOO01D €

———~ST1DAD INIHOVW 92

s WYHOVIA

T 4.
o€ NYOSHIAO
11—
292
261
3YN1DId AL TWVNLOV WNV g
IV LNOZIHOH
-Mmlu|
LE MNVYI1G[IVOILHIA
_r - ONAS IVYOILH3A
€ - 09k T) 89 T
— " .QNN — —— — —
- SINNOD D012

no<wcZ a0 2ZWwn —mmm

The actual TV picture is drawn one line at time by having the
microprocessor enter the data for that line into the Television
Interface Adapter (TIA) chip, which then converts the data into
video signals. The TIA can only have data in it that pertains to
the line being currently drawn, so the microprocessor must be "one
step ahead” of the electron beam on each line. Since one
microprocessor machine cycle occurs every 3 clock counts, the
programmer has only 76 machine cycles per line (228 / 3 =76) to
construct the actual picture (actually less becuase the
microprocessor must be ahead of the raster). To allow more time
for the software, it is customary (but not required) to update the
TIA every two scan lines. The portion of the program that

constructs this TV picture is reffered to as the "Kernel”, K as it 1is

the essence or kernal of the game.

In general, the remaining 70 scan lines (3 for VSYNC, 37 for
VBLANK and 30 for overscan) will provide 5320 machine cycles (70
lines X 76 machine cycles) for houskeeping and game logic. Such
activities as calculating the new position of a player. updating
the score. and checking for new inputs are typically done during

this time.

Ihe TIA

(as seen by the programmer)

1.0 GENERAL DESCRIPTION

The TIA is a custom I.C. designed to create the TV picture and
sound from the instructions sent to it by the microprocessor. It
converts the 8 bit parallel data from the microprocessor into
signals that are sent to the video modulation circuits which
combine and shape those signals to be compatable with ordinary TV
reception. A "playfield"” and 5 moveable objects can be created and

manipulated by scftware.

A playfield consisting of walls, clouds, barriers, and other
seldom moved objects can be created over a colored background. The
5 moveable objects can be positioned anywhere, and consist of 2
players, 2 missles, and a ball. The playfield, players, missles,
and the ball are created and manipulated by a series of registers
in the TIA that the microprocessor can address and write into.
Each type of object has certain defined capabilities. For example,
a player can be moved with one instruction, but the playfield must

be completely re-drawn in order to make it "move" .

Color and luminosity (brightness) can be assigned to the
background, playfield, and 5 moveable objects. Sound can also be
generated and controlled for volume, pitch, and type of sound.
Collisions between the various objects on the TV screen are
detected by the TIA and can be read by the microprocessor. Input
ports which can be read by the microprossor give the status of some

of the various hand held contreollers.

2.0 THE REGISTERS

All instructions to the TIA are achieved by addressing and
writing to various registers in the chip. A key point to remember
is that data written in a register is latched and retained until
altered by another write operation into that register. For
example, if the color register for a player is set for red, that
player will be red every time it’s drawn until that color register
is changed. all of the registers are addressed by the

microprocessor as part of the overall RAM/ROM memory space.

All registers have fixed address 1locations that are pre-
assigned address names for handy reference. Many registers do not
use all 8 data bits, and some registers are used to "strobe" or
trigger events. AR "strobe" register executes 1its function the
instant it is written to (the data written is ignored). The only
registers a microprocessor can read are the collision registers and
input port registers. These registers are conveniently arranged so
the data bits of interest always appear as data bits 6 or 7 for

easy access.
3.1 HORIZONTAL TIMING

When the electron beam scans across the TC screen and reaches
the right edge, it must be turned off and moved back to the left
edge of the screen to begin the next scan line. The TIA takes care
of this automatically, independent of the microprossor. A 3.58 Mz
oscillator generates clock pluses called "color clocks”™ which go
into a pulse counter in the TIA. This counter allows 160 color
clocks for the beam to reach the right edge, then generates a

horizontal sync signal (HSYNC) to return the beam to the left edge.

It also generates the signal to turn the beam off (horizontal
blanking) during its return time of 68 color clocks. Total round
trip for the electrom beam is 160 + 68 = 228 color clocks. Again, -
all the horizontal timing is taken care of by the TIA without

assistance from the microprocessor.

3.2 MICROPROCESSOR SYNCHRONIZATION

The microprocessor’s clock is the 3.58 MHz oscillator divided
by 3, so one machine cycle is 3 color clocks. Therefore, one
complete scan line of 228 color clocks allows only 76 machine
cycles (228 / 3 =76) per scan line. The microprocessor must be
synchronized with the TIA on a line-by-line basis, but program
loops and branches take unpredictable lenghts of time. To solve
this software synchronization problem, the programmer can use the
WSYNC(Wait for SYNC) strobe register. Simply writting to WSYNC
causes the microprocessor to halt until the electron beam reaches
the right edge of the screen, then the microprocessor resumes
operation at the beginning of the 68 color clocks for horizontal
blanking. Since the TIA latches all instructions until altered by
another write operation, it could be updated every 2 or 3 lines.
The advantage is the programmer gains more time to execute
software, but a price is paid with lower vertical resolution in the
graphics.

NOTE: WSYNC and all the following addresses’ bit structures are

itemized in the TIA hardware manual. The purpose of this
document is to make them understandable.

3.3 VERTICAL TIMING

when the electron beam has scanned 262 lines, the TV set must
be signaled to blank the beam and position it at the top of the
screen to start a new frame. The signal is called vertical sync,
and the TIA must transmit this signal for at least 3 scan lines.
This is accomplished by writting a "1" in Dl of VSYNC to turn it
on, count at least 3 scan lines, then write a "0" to Dl of VSYNC to

turn it off.

To physically turn the beam off during its repositiocning time,
the TV set needs 37 scan lines of vertical blank signal from the
TIR. This 1s accomplished by writting a "1" in D1 of VBLANK to
turn it on, count 27 scan lines, then write a "0" to Dl of VBLANK
to turn it off. The microprocessor 1s of course free to execute
other software during these vertical timing commands, VSYNC and

VELANK.

4.0 COLOR AND LUMINOSITY

Color and luminosity can be assigned to the background (BK),
playfield (PF), ball (BL), player 0 (P0O), player 1 (Pl), missile O
(MO), and missile 1 (Ml). There are only four cclor-lum registers
for these 7 objects, so the objects are paired to share the same

register according to the following list:

Lor-] . : b] i
COLUMPO PO (player 0), MO (missile 0)
COLUMP1 Pl (player 1), Ml (missile 1)
COLUMPF PF (playfield), BL (ball)

COLUMBK BK (background)

For example, if the COLUMPO register is set for light red,

both PO and MO will be light red when drawn.

A color-lum register is set for both color and luminosity by
writing a single 7 bit instruction to that register. Four of the
bits select one of the 16 available colors, and the other 3 bits
select on of 8 levels of luminosity (brightness). The specific
codes required to create specific color and lum are listed in the
the "Detailed Address List" of the TIA hardware manual. As with
all registes (except the "strobe” registers) the data written to

them is latched until altered by another write operation.

5.0 PLAYFIELD

The PF register is used to create a play field of walls,
clouds, barriers, etc., that are seldom moved. This low resolution
register is written into to draw the left half of the TV screen
only. The right half of the screen is drawn by software selection
of either a duplication or a reflection (mirror image) of the left

half.

The PF register is 20 bits wide, so the 20 bits are written
into 3 addresses: PFO, PFl, and PF2. PFO is only 4 bits wide and
constructs the first 4 "bits" of the playfield, starting at the
left edge of the TV screen. PFl constructs the next 8 "bits", and
PF2 the last 8 "bits" which end at the center of the screen. The
PF register is scanned from left to right and where a "1" 1s found
the PF color is drawn, and where a "0" is found the BK color is
drawn. To clear the playfield, obviously zeroes must be written

into PFO, PFl, and PFZ2.

To make the right half of the playfield a duplication or a
copy of the left half, a "0" is written to DO of the CTLPF

(control playfield) register. Writing a "1" will cause the

reflection to be displayed.

6.0 THE MOVEABLE OBJECTS GRAPHICS

All 5 moveable objects (PO, MO, P1, M1, BL) can be assigned a

horizontal location on the screen and moved left or right relative

to that location. Vertical positions, however, are treated in an
entirely different manner. In principle, these objects appear at
whatever scan lines their graphics registers are enabled. For

example, let us assume the ball is to be positioned vertically 1in
the center of the screen. The screen has 192 scan lines and we
want the ball to be 2 scan lines "thick". The ball graphics would
be disabled until scan line 96, enable for 2 scan lines, then
disabled for the rest of the frame. Each type of object (players,
missiles, and the ball) has 1its own characteristics and

limitations.

6.1 MISSILE GRAPHICS (MO, M1)

The two missile graphics registers will draw a missle on any
scan line by writing a "1" to the one bit enable missile registers
(ENAMO, ENAM1). Writing a "0" to these registers will disable the
graphics. The missiles’ left edge is positioned by a horizontal
position register, but the right edge is a function of how wide the

missile is made. Width of a missile is controlled by writing intoe

bits D4 and D5 of the number-size registers (NUSIZO, NUSIZ1). This
has the effect of “stretching” the missiles out over 1, 2, 4, or 8

color clock counts (a full scan line is 160 color clocks).

6.2 BALL GRAPHICS (BL)

The ball graphics register works Just 1like the missile
registers. writing a "1" to the enable ball register (ENABL)
enables the ball graphics until the register is disabled. The ball
can also be “stretched” to widths of 1, 2, 4, or 8 color clock

counts by writing to bits D4 and D5 of the CTRLPF register.

The ball can also be vertically delayed one scan line. For
example, if the ball graphics were enabled on scan line 955, 1t
could be delayed to not display on the screen until scan line 96 by
writing a "1" to DO of the vertical deiay (VDELBL) register. The
reason for having a vertical delay capability 1s because most
programs will update the TIA every 2 lines. This confines all
vertical movements of objects to 2 scan line "Jjumps”. The use fo

vertical delay allows the objects to move one scan line at a time.
6.3 PLAYER GRAPHICS (PO, Pl)

The player graphics are the most sophisticated of all the
moveable objects. They have all the capabilities of the missiles
and ball graphics, plus three more capabilities. Players can take
on a "shape” such as a man or an airplane, and the player can be
easily flipped over horizontally to display the mirror 1image
(reflection) instead of the original image, plus multiple copies of

the players can be created.

The player graphics are drawn line-by-line like all other
graphics. The difference here is each scan line of the player is 8
"bits" wide, whereas the missiles and ball are one "bit" wide.
Therefore, a player can be thought of as being drawn on graph paper
8 squares wide and as tall as desired. To "color in the sguares”
of this imaginary graph paper, 8 data bits are written into the
players graphics registers (GPO, GPl). This 8 bit register 1is
scanned from D7 to DO, and wherever a "1" is found that "square”
gets the players’ color (from the color-lum register) and where a
"0" is found that "square" gets the background color. To position
a player vertically, simply leave all "0’s" in the graphics
registers (GPO, GPl) until the electron beam is on the scan line
desired, write to the graphics register line-by-line describing the
player, then write all "0’s" to turn off the players’ graphics

until the end of that frame.

To display a mirror image (reflection) instead of the original
figure write a "1" to D3 of the one bit reflection register (REFPO,
REFP1) . A "0" written to these registers restores the original

figure.

Multiple copies of players as well as their size are
controlled by writing 3 bits (DO, D1, D2) into the number-size
registers (NUSIZO, NUSIZ1). These three bits select from 1 to 3
copies of the player, spacing of those copies, as well as the size
of the player (each "square" of the player can be 1, 2, or 4 clocks
wide) . whenever multiple copies are selected, the TIA

automatically creates the same number of copies of the missile for

that player. Again, the specifics of all this are laid out in the

TIA hardware manual.

Vertical delay for the players works exactly like the ball by
writing a "1" to DO in the players’ wvertical delay registers
(VDELPO, VDELP1). Writing a "0" to these locations disables the

vertical delay.

7.0 HORIZONTAL POSITIONING

The horizontal position of each object is set by writing to
its’ associated reset register (RESPO, RESP1l, RESMO, RESMl, RESBL)
which are all "strobe" registers (they trigger their function as
soon as they are addressed). That causes the object to be
positioned wherever the electron beam was in its sweep across the
screen when the register was reset. For example, if the electron
beam was 60 color clocks intc a scan line when RESP0 was written
to, player 0 would be positioned 60 color clocks "in" on the next
scan line. Whether or not PO is actually drawn on the screen is a
function of the data in the GPO register, but if it were drawn, it
would show up at 60. Resets to these registers anywhere during
horizontal blanking will position objects at the left edge of the
screen(color clock 0). Since there are 3 color clocks per machine
cycle, and it can take up to 35 machine cycles to write to a
register, the programmer is confined to positioning the objects at
15 color <clock intervals across the screen. This “"course”
positioning is "fine tuned" by the Horizontal Motion, explained 1in

section 8.0.

Missiles have an additional positioning command. Writing a "l1°
to D1 of the reset missile-tco-player register (RESMPO, RESMP1)
disables that missiles’ graphics (turns it off) and repositions it
horizontally to the center of it’s associated player. Until a "0°
is written to the register, the missiles’ horizontal position 1s
locked to the center of it’s player in preparation to be fired

again.

8.0 HORIZONTAL MOTION

Horizontal motion allows the programmer to move any of the 5
graphics objects relative to their current horizontal position.
Each object has a 4 bit horizental motion register (HMPO, HMPL,
HMMO HMM1, HMBL) that can be loaded with a value in the range +7
to -8 (negative values are expressed in two’'s complement form).
This motion is not executed until the HMOVE register is written to,
at which time all motion registers move their respective objects.
Objects can then be move repeatedly by simply executing HMOVE. Any
object that is not to move must have "0" 1in its motion register.
With the horizontal positioning command confined to positioning
objects at 15 color clock intervals, the motion registers fill in
the gaps by moving objects +7 to -8 color clocks. Objects can now
be placed at any color clock position across the screen. ARll 5
motion registers can be set to zero simultaneously by writing to

the horizontal motion clear register (HMCLR).

There are timing constraints for the HMOVE command. The HMOVE
command must immediatley follow a WSYNC (Wait for SYNC) to insure
the HMOVE operation occurs during horizontal blanking. This is to

allow sufficient time for the motion registers to do their thing

before the electron beam starts drawing the next scan line. Also,
for mysterious internal hardware considerations, the motion
registers should not be modified for at least 24 machine cycles

after an HMOVE command.

9.0 OBJECT PRIORITIES

Each object is assigned a priority so when any 1two cbjects
everlap the one with the highest priority will appear to move in
front of the other. To simplify hardware logic, the missles have
the same priority as their associated player., and the ball has the
same priority as the playfield. The background, of course, has the
lowest priority. The following table 1llustrates the normal

(default) priority assignments:

PRIORITY OBJECTS
1 PO, MO
2 Pl, Ml
3 BL, PF
4 BK

This priority assignment means that players and missiles will
move in front of the playfield. To make the players and missiles
move behind the playfield, a "1" must be written to D2 of the

CTRLPF register.

The following table illustrates how the priorities are affected:

PRIORITY OBJECTS
1 PF, BL
2 PO, MO
3 Pl, Ml
4 BK

One more priority control is available to be wused for
displaying the score. When a "1" is written to Dl of the CTRLFF
register, the left half of the playfield takes on the color of
player 0, and the right half takes on the color of player 1. The
game score can now be displayed using the PF graphics register, and

the score will be in the same color as its associated player.

10.0 COLLISIONS

The TIA detects collisions between any of the 6 object it
generates (the playfield and 5 moveable objects). There are 15
possible two-object collisions which are stored in 15 one bit
latches. Each collision register contains two of these latches
which are read by the microprocessor on D6 and D7 of the data bus
for easy access. A "1" on the data line indicates one of the 15
collisions has occured. The collision registers could be read at
any time but is usually done during vertical blank after all
possible collisions have occured. The collision registers are all
reset simultaneously by writing to the collision reset register

(CXCLR) .

11.0 SOUND

There are two audio channels for sound generation. They are
identical but completely independent and can be operated
simultaneously to produce sound effects through the TV’'s speaker.
Each audio channel has three registers that control a noise-tone
generator (what kind of sound), a frequency selection (high or low

pitch of the sound), and a volume control.

11.1 NOISE-TONE GENERATOR

The noise-tone generator is controlled by writing to the 4 bit
audio control registers (AUDCO, AUDCl). The values written cause
different kinds of sounds to be generated. Some are pure tones
like a flute, other have various "noise" content like a rocket
motor or explosion. Even though the TIA hardware manual list the
sounds created by each value, some experimentation will be

necessary to find "your sound”.

11.2 FREQUENCY CONTROL

Frequency selection is controlled by writing to a 5 bit audio
frequency register (AUDFO, AUDF1l). The value written is used to
divide a 30KHz reference frequency creating higher or lower pitch
of whatever type of sound is created by the noise-tone generator.
By combining the pure tones available from the noise-tone generator

with a frequency selection, a wide range of tones can be generated.

11.3 VOLUME

Volume is controlled by writing to a 4 bit audio volume
register (AUDVO, AUDV1). Writing a "0" to these registers turns
sound off completely, and writing any value up to 15 increases the

volume accordingly.

12.0 INPUT PORTS

They are six input ports whose logic states can be read on D7
by reading the input port addresses (INPTO, INPTl, INPTZ, INPT3,
INPT4, INFTS). These six ports are divided into two types,

"dumped"” and "latched"”.

12.1 DUMPED INPUT PORTS (INPTO, INPT1, INPT2, INPT3)

These four ports are used to read up to four paddle
controllers. Each paddle controller contains an adjustable pot
controlled by the knob on the contreller. The cutput of the port
is used to charge a capicitor in the conscle, and when “the
capacitor is charged the input port goes HIGH. The microprocessor
discharges this capacitor by writing a "1" to D7 of VBLANK then
measures the time it takes to detect a logical one at the port.
This information can be used to position objects on the screen

based on the position of the knob on the paddle controller.

12 .2 LATCHED INPUT PORTS (INPT4, INPTS)

These two ports have latches that are both enabled by wring a
"1" or disabled by writing a "0" to D6 of VBLANK. When disabled
the microprocessor reads the logic level of the port directly.
when enabled, the microprocessor is reading the latch, not the
port. When enabled, the latch is set for logic one and remains
that way until its’ port goes LOW. When the port goes LOW the
latch goes LOW and remains that way regardless of what the port

does. The trigger buttons of the joystick controllers connect to

these ports.

THE PIA (6532)

1.0 GENERAL

The PIA chip is an off-the-shelf 6532 Peripheral Interface
Adaptor which has three functions, a programmable timer, 128 bytes

of RAM, and two 8 bit parallel I/0 ports.

2.0 INTERNAL TIMER

The PIA uses the same clock as the microprocessor so that one

PIA cycle occurs for each machine cycle. The PIA can be set for
one of four different "intervals", where each interval 1is some
multiple of the clock (and therefore machine cycles). AR value from

1 to 255 is loaded into the PIA which will be decremented by one at
each interval. The timer can now be read by the microprocessor to
determine elasped time for timing various software operations and

keep them synchronized with the hardware (TIA chip).

2.1 SETTING THE TIMER

The timer is set by writing a value (from 1 to 255) to the

address of the desired interval setting according to the following

table:
HEX ADDRESS INTERVAL MNEMONIC
$294 1 Clock TIMIT
$295 8 Clocks TIMSBT
$296 64 Clocks TIMGAT
$297 1,024 Clocks TIM1024T

For example, if the value 100 were written to TIM64T ($296)
the timer would decrement to 0 in 6400 clocks (64 clocks per
interval x 100 intervals) which would also be 6400 microprocessor

machine cycles.

2.2 READING THE TIMER

The timer may be read any number of times after it is loaded
of course, but the programmer is usually interested in whether or
not the timer has reached 0. The timer is read by reading INTIM at

HEX address $284.

2.3 WHEN THE TIMER REACHES ZERO

The PIA decreﬁents the value loaded into it once each interval
until it reaches 0. It holds that 0 for one interval, then the
value is flipped over to $FF and decrements once each glock gcycle,
rather than once per interval. The purpose of this feature is to
allow the programmer to determine how long ago the timer zeroed

itself out in the event the timer was read after it passed zero.

3.0 RAM

The PIA has 128 bytes of RAM located in the STELLA map from
HEX address $80 to SFF. The microprocessor stack is normally
located from S$FF downward, and variables are normally located from

$80 upward (hoping the two never meet).

4.0 THE I/0 PORTS

The two ports (Port A and Port B) are 8 bits wide and can be
set for either input or output. Port A is used to 1interface to
various hand-held controllers but Port B is dedicated to reading

the status of the STELLA console switches.

4.1 PORT B - Console Switches (Read only)

Port B is hardwired to be an input port only. Port B 1is read
by addressing SWCHB ($282) to determine the status of all the

console switches according to the following table:

DATA BIT =SWITCH BIT MEANING

D7 Pl Difficulty 0 = Amateur (B), 1 = Pro (A)
D6 PO Difficulty 0 = Amateur (B), 1 = Pro (A)
D5 Not used.

D4 Not used. -

D3 Color - B/W 0 = B/W, 1 = Color

D2 Not used.

D1 SELECT 0 = Switch is pressed.

DO RESET 0 = switch is pressed.

NOTE: B2ll the above switches work the same on the 7800 except
for the "Color - B/W" switch which is the pause button on
the 7800.

5.0 PORT A - Hand Controllers

Port A is under full software control to be configured as an
input or an output port. It can then be used to read or control
various hand-held controllers with the data bits defined

differently depending on the type of controller used.

5.1 SETTING FOR INPUT OR OUTPUT

Port A has an 8 bit wide Data Direction Register (DDR) that is
written to at CTLSWA ($281) to set each individual pin of Port A to
be either input or output. The Port A pins are labeled PAQ through
PA7. Writing a "0" to a pins’ DDR bit will set that pin for input
and writing a "1" to a pins’ DDR bit will set that pin for output.
For example, writing all 0’s to CTLSWA (the DDR for Port A) sets
PAO to PA7 (all 8 pins of Port A) as inputs. If $FO (11110000)
were written to CTLSWA then PA7, PA6, PAS5, & PA4 would be outputs,

and PA3, PA2, PAl & PAO would be 1nputs.

5.2 INPUTING AND OUTPUTING

Once the DDR has set the pins of Port A for input or output

they may be read or written to by addressing SWCHA ($280).

5.3 JOYSTICK CONTROLLERS

Two joysticks can be read by configuring the entire port as
input and reading the data at SWCHA ($280) according to the

following table:

DATA BIT DIRECTION PLAYER

D7 Right PO (Left Player)
D6 Left PO

D5 Down PO

D4 Up PO

D3 Right Pl (Right Player)
D2 Left Pl

D1 Down Pl

DO Up Pl

A "0" in a data bit indicates the joystick has been moved to
close that switch. All "1"s in a player’s "nibble" indicates the
joystick is not moving.

NOTE: The trigger buttons do not go to the PIA. They are read
on bit 7 of INPT4 and INPTS of the IIA.

5.4 PADDLE (Pot) CONTROLLERS

only the paddle triggers are read from the PIA. The paddles
themselves are at INPTO through INPT3 of the IIA. The data bit 1is
set to 0 when the trigger is pressed. The paddle triggers can be

read at SWCHA according to the following table:

DATA BIT PADDLE NUMBER
D7 Paddle O
D6 Paddle 1
D5 Not used.
D4 Not used.
D3 Paddle 2.
D2 Paddle 3.
D1 Not used.

DO Not used.

5.5 KEYBOARD CONTROLLERS

The keyboard controller has 12 buttons arranged into 4 rows
and 3 columns. A signal is sent to a row, then the columns are
checked to see if a button is pushed, then the next row is signaled
and all columns are sensed, etc. until the entire keyboard is
scanned and sensed. The PIA sends the signals to the row, and the
columns are sensed by reading INPTO, INPT1, and INPT4 of the TIA.
Wwith Port A configured as an output port, the data bits will send a

signal to the keyboard controller rows according to the following

table:

DATA BIT KEYBOARD ROW PLAYER

D7 Bottom PO (Left Player)
D6 Third PO

D5 Second PO

D4 Top PO

D3 Bottom . Pl (Right Player)
D2 Third Pl

D1 Second Pl

DO Top Pl

NOTE: A delay of 400 microseconds is necessary between writting to
this port and reading the TIA input ports.

6.0 ADDRESS SUMMARY TABLE

HEX
ADDRESS MNEMONIC PURPOSE
$280 SWCHA Port A; Input or Ouput (Read or Write)
$281 CTLSWA Port A DDR, O=Input, l=Output (Write only)
$282 SWCHB Port B: Console switches (Read only)
$283 CTLSWB Port B DDR (Hardwired as input)
$284 INTIM Current timer interval count. (Read only)
$294 TIMIT Set 1 clock interval (838 nsec/interval)
$295 TIMBT Set 8 clock interval (6.7 usec/interval)
$296 TIM64T set 64 clock interval (53.6 usec/interval)
$297 TIM1024 Set 1024 clock interval (858.2 usec/interval)

NOTE: One clock is also one microprocessor machine cycle.

PAL/SECAM CONVERSIONS

1. The rucber of scan lines, and therefore the frawme time, increzses from
NTSC to FAL &£ ccording to the follc :ng table:

NTSC | PAL |
SCAN | MICRO- | SCAN | MICRO- |
LINES| SECONDS| LINES] SECCNDS|

VELANK 40 | 2,548 | 48 | 3,085 |
KERSAL 192 | 12,228 | 228 | 14,656 |
CVIXESCAN 30 | 1,910] 36 | 2,314 |
FRAVE 262 | 16,686 | 312 | 20,055 |

s will drop a little ip pitch (frequency) because of a slover
2l clock. Soze sounds may need the AUDFO/AUDF1 touched up.

3. PAL crerates at 50 Ez cowmpared to KTSC 60 Rz, a 171 reduction. 1£
gaze play speed is based on frazmes per second, it will slow dowvr by
17%2. This cap be disastrous for wmost skill/action carts. If the NTSC
version Zs designed with 2 bvte fracticcal addition techuniques (o

cesversicn can be as sizple as changing the fraction tables, avcidipg
zajor surgery on the program.
CY LM

-

1. SECAM {s 3 little weird. It takes the PAL software, but the console
color/black & white switch is hardwired as black & white. Therefore,
{t reacs the PAL black & white tazbles in softwzre and assigns a fixed
color to each lum of black & white according to the following tabdle:

7

COLOR

black

blue

red

magenta

green

cyan

yellow

vhite .

MO 0000 NO

There is & trap here: the manual is the same for NTSC, PAL, & SECAM.
This ceans that the descriptions for black & white must jive between
NTSC & PAL. If you make major changes to PAL black & white to achieve
good SECAM color, NTSC black & white must be made similar.

2. PAL sounds work fine on SECAM with one exception: when a sound is to
~be turped off, it must be done by setting AUDVO/AUDV] to O, pot by setting
AUDCO/AUDC] to 0. Otherwise, you get an obnoxious background sound.

